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Abstract-A study is presented on the two classes of limiting analyses in radiation heat-transfer problems: 
the analysesof the opaque limit and the transparent limit on the one hand and those of the radiation pre- 
dominant limit and the conduction predominant limit on the other hand. In the first case treatment valid 
uniformly regardless whether radiation predominant or conduction predominant is not available. In the 
second case, however, a uniformly valid treatment regardless of the value of opacity is achieved. 
Accordingly, it offers a more logical way than the first case to the solution of combined radiation and 
conduction problems. The scheme comprises the solution of a non-linear differential equation in the 
radiation predominant case and a non-linear integral equation in the conduction predominant case. 

NOMENCLATURE Greek symbols 
parameter which determines the rela- 
tive importance of conduction and 
radiation on the determination of temp- 
erature profile ; 
exponential integral of nth order ; 
emerging intensity from the medium 
across the boundary; 
unit step function ; 
intensity ; 
incident intensity across the boundary 
on the medium ; 

mean intensity, J E 3 1’ I’dp ; 
-1 

mean intensity of a non-absorbing 
medium ; 
mean intensity of a medium in radiative 
equilibrium ; 
thermal conductivity; 
thickness of a plane layer ; 
conduction-radiation interaction para- 
meter defined by N - kpa,MaT: ; 
heat flux ; 
source function ; 
temperature ; 
equivalent temperature of a diffusely 
incident intensity; 
coordinate perpendicular to boundary. 

absorption coefficient ; 
Dirac delta function ; 
emissivity of an opaque wall ; 
dimensionless temperature, 0 = T/T, ; 
directional cosine between the intensity 
and the outward drawn normal of the 
boundary ; 
dimensionless coordinate, 5 = x/L ; 
density ; 
optical depth ; 
optical thickness of a plane layer, 
zO - paL. 

Subscripts 

c, refers to conduction ; 

I, refers to radiation ; 
1,2, refer to boundary 1 and boundary 2 

respectively. 

Superscript 

+, denotes dimensionless quantity. 

1. INTRODUCTION 

THERE are two special cases for which the radia- 
tion flux can be expressed in simple formulas 
[l, 21: (i) opaque materials, in which the 
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absorption of radiation is so intense that radia- 
tion is in local thermodynamic equilibrium* 
with the matter, and (ii) transparent materials, 
in which there is little self-absorption of the 
radiated energy. These two limits have been 
successfully applied [3, 41 to the calculation of 
radiation heat flux through mediums in the 
absence of conduction. 

The application of these two limits to the 
calculation of heat flux through mediums in the 
presence of both radiation and conduction was 
given by Cess [2] with limited success. Wang 
and Tien [5], instead of considering the opaque 
and transparent limits, obtained satisfactory 
results by considering the radiation predominant 
and conduction predominant limits. 

In view of the existence of two sets of limiting 
situations it seems advantageous to discuss them 
in one single paper in order to examine their 
respective limitations and to see their relation- 
ship. This paper is composed of four parts. In 
Section 2 the opaque and transparent limits of 
radiation heat transfer in the absence of con- 
duction are briefly reviewed. The contribution 
there is the clarification of the boundary condi- 
tions. In Section 3 a treatment of the opaque 
and transparent limits of combined radiation 
and conduction is presented. The treatment has 
limited applicability because of the difficulty in 
the imposing of boundary conditions. Presented 
in Section 4 is a treatment of the radiation pre- 
dominant and conduction predominant limits. 
The contribution there is the development of a 
formulation which is not based on the approxi- 
mate differential method as was used by Wang 
and Tien [5] in a previous paper. In Section 5 
the respective limitations of both approximate 
methods are then discussed together. 

Throughout this paper only thermal radia- 
tion,? i.e. the radiation source function depends 

* The meaning of “local thermodynamic equilibrium” 
throughout this paper is to be understood in the conventional 
usage in thermodynamics literature while “thermal radia- 
tion” will be used to substitute the often used “local thermo- 
dynamic equilibrium” in radiation literature. 

only on temperature, not on radiation mean 
intensity, will be considered. And only finite, 
one-dimensional systems will be studied. 

2. RADIATIVE EQUILIBRIUM 

2.1 The opaque limit 
The radiation flux in the opaque limit is equal 

to L-61 

B = - *grad.l, 
3PU 

where & is the radiation flux, pa the extinction 
coefficient which is proportional to density, p, 
and J the mean intensity. Integration of the 
equation of transfer with respect to all directions 
at a given point yields 

div 4‘, = 47rpa(S - J), (2) 

where S is the source function which is assumed 
to be equal to the Planck function in this study. 
In radiative equilibrium, 

div & = 0, (3) 

hence 

S = J. (4) 

Since conduction is considered to be negligible 
in this section, the temperature itself at the 
boundary is not a boundary condition to the 
medium. Precisely speaking, the boundary con- 
dition is the “continuity of the radiation heat 
flux and of the mean intensity at the boundary”. 
Suppose the incident intensity across the bound- 
ary on the medium is I(p), where p is the direc- 
tional cosine between the incident intensity and 
the outward drawn normal of the boundary. 
And suppose the emerging intensity from the 
medium across the boundary is G(p). Then the 
radiation heat flux at the boundary is equal to 

4,. = 27~ ‘PG(P) dp + 2$/J(r) dp. 
d 

(5) 

As the medium is opaque, 

G(p) g G = constant; 

t See previous footnote. hence 
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q,=?iG+2np I( )d +P P P (6) 

And the mean intensity at the boundary is equal 
to 

When I(& is explicitly given, equations (6) 
and (7) become the boundary condition of 
equation (1) after eliminating G from them. This 
is the case of a transparent wall boundary. 

However, in the case that the boundary is an 
opaque wall the temperature of the wall, not the 
incident intensity, is the condition explicitly 
given. The following formula, 

4, = &(rc1 - oT4), (8) 

where c is the emissivity of the wall, is then 
needed to determine the incident intensity, I, 
from the known wall temperature and wall 
emissivity. The opaque wall is assumed to be 
diffuse in deriving equation (8). 

To illustrate the applicability of the above 
formulation to various boundary conditions a 
plane layer of thickness, L, with black opaque 
wall at. temperature T,, on one side is con- 
sidered. The radiation heat flux results are: 

(i) 
oT’: - aT: 

qr = (l/E, - 1) + (1 f $paL) (9) 

when the other boundary is an opaque wall with 
emissivity c2 and at temperature T2 ; 

(ii) 

(IO) 

when the other boundary is a transparent wall 
which separates the medium in the plane layer 
from an isothermal enclosure at temperature T; 

and 

(iii) 

*T4 

1 

_ 1 + 2/dxl 

2 2 
4, = 

1 +$polL ’ 
(11) 

when the other boundary is a transparent wall 
and a parallel radiation beam of intensity I, is 
incident on the plane layer with an angle B. = 
cos- 1 po, i.e. 

I(P) = 12% - PO). (12) 

Equations (10) and (11) indicate that a trans- 
parent wall is equivalent to a black opaque wall 
at some equivalent temperature, for case (ii) 

T=T (134 

and for case (iii) 

The present results agree asymptotically with 
the existing rigorous results [7]. 

With boundary conditions properly chosen, 
the differential approximation, equation (1) is 
seen to be quite flexible in its application. The 
temperature slip determined by equation (4) is 
an inherent feature of a medium in radiative 
equilibrium when it is adjoining an opaque wall, 
It is the mean intensity, not the temperature, 
which satisfies the non-slip condition. 

2.2 The transparent limit 
In the transparent limit, the mean intensity 

can be written as 

d 
J(pcl, 2) = f(0, s;) + pa- 

d(N 
J(0, 2) + . . . * 

04) 

As a first approximation in the transparent limit, 
therefore, the source function and the mean 
intensity may be taken as 

S = J z f(O,st) = J&z). (14a) 

Here J, is the mean intensity of a non-absorbing 
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medium which is a function of position only. For a plane layer r = 2I. ; and .ZOL = J,,E 
Now at a certain point on the boundary 1 the because .z~ is constant. Equation (15a) then 
radiation heat flux, given by becomes 

41 = 2+G(ddp + 2+Z(p)dp. (15) 
4, = 2n(paL) Jo + (1 - 2paL) 7cZ, - 71Z2 (17a) 

is approximately equal to 
and 

4, = - 27c(paL) Jo - (1 - 2paL) xl, + 7cZ1, 
qr = zpaJJ. 

+ 1 [l - (71!Wi) pa&] WiZi - 7111, 
(17b) 

(15a) and consequently 
I 

where r is the geometric mean beam length of qr = (nl, - nl,) (1 - paL). (17) 

the medium volume to the point of interest, z 
the geometric mean beam length of the conical 

This may be rewritten as 

volume subtended by the ith boundary surface XI1 - 7112 

to the point of interest, 
4, = 

1 + paL ’ 
(18) 

p1, which is consistent with the transparent approxi- 
mation made and avoids yielding the physically 

wi the projection area, from the surface segment 
of a hemisphere of unit radius subtended by the 

impossible results as equation (17) does when 
paL > 1. The present results, equation (17) or 

ith boundary surface, on the base plane which is equation (18), also agree asymptotically with 
tangent to boundary surface 1 at the point of 
interest. 

the existing rigorous results [7]. 

1 wi = 71, 3. COMBINED RADIATION AND 
i CONDUCTION-PART A 

and .Z,,L the integral of J,, with respect to z, 

the detail of which is referred to [8]. Equation 
(15a) is only valid for diffusely incident radiation 
intensity. The second and third terms on the 
right hand side of equation (15a) may, of course, 
be replaced by appropriate terms as was done 
in Section 2.1 when Z depends on directions. 

As an example of solving the transparent 
limit problems let us consider a plane layer with 
opaque walls of emissivities c1 and t2 on 
boundary 1 and boundary 2 respectively. Using 
equations (6) and (8) and setting G1 = Z2 and 
Gz = I, yield the transparent mean intensity 

Under the influence of conduction the finite 
difference between the temperature of an opaque 
wall and that of the medium touching the opaque 
wall disappears. (Discontinuity of temperatures 
at the walls is of course also associated with 
conduction, but it is not significant in a system 
many conduction-mean-free-paths thick. The 

ratio Zrad!Zcond is generally a number of many 
orders of magnitude.) The disappearance of 
temperature slip does not imply, however, that 
the boundary condition of the continuity of the 
radiation heat flux and of the mean intensity is 
replaced by that of the continuity of temperature. 
Rather, it introduces a new boundary condition 
-the continuity of temperature-in addition to 
the radiation boundary condition. This should 
be clear for the case where the boundary is a 
transparent wall which separates the medium 
from an isothermal enclosure. As far as the 
radiation incident intensity is concerned, then, 
this boundary is equivalent to a black opaque 
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wall at the tem~rature of the isothermal en- 
closure. I3ut the medium temperature at the 
boundary must also be equal to the temperature 
of the transparent wall which may be controlled 
independently. Therefore for this case there are 
two independently prescribed temperatures in 
the boundary conditions. For the case where 
the boundary is an opaque wall, both boundary 
conditions still have to be satisfied. There exists, 
however, a relationship between them because 
they are both described by the same temperature. 

3.1 The olive limit 
In the opaque limit the radiation heat flux far 

away from boundary is equal to 

&= -*gradJz 
3pa 

- :pi grad S. (19) 

The second approximate equality is a conse- 
quence of equation (2). 

It is well known that the approximation 
represented by equation (19) becomes less satis- 
factory in the regions near the bo~da~. A 
recent paper [9] is devoted to obtain~g a 
uniformly valid approximation in the opaque 
limit. A simpler treatment without going through 
the unnecessary complications in [9] is pre- 
sented in this section. 

Since the boundary effect is confined within a 
geometrically thin layer, it is sufficient to con- 
sider a plane boundary layer when the radius of 
curvature of the boundary surface is not too 
small. Suppose that the effect of conduction is so 
signi~~nt that the temperatu~ is an analytic 
function everywhere, then the source function 
(or the Planck function), being an analytic 
function of temperature, must also be an analytic 
function and can be expanded into a Taylor’s 
series. Define the optical depth, T 3 pax, where 
x is the normal distance from the boundary 
surface. The equation of transfer is then inte- 
grated with respect to z to give 

where 1’ is the intensity. The Taylor’s expansion 
of the source function is 

S(t) = S(r) + (t - 7) & S(r) 

-i- # (t - z)Z $ S(z) 4- . . . I (21) 

Substituting equation (21) into the integrand in 
equation (20) and carrying out the integration 
yield 

f’ = 1 e’l” _ e”fl 

x s(o)+~~s(o)+~2 I $S(O) + . . . 
1 

+ [ s(r)+a&s(r)+P2~S(?)+-.. . 
1 

(214 
The radiation heat flux then becomes after 

integration equation (21a) with respect to ~1 

- f-$(7). (22) 

The first part on the right-hand side of equation 
(22) represents the boundary effect which decays 
exponentially with the optical depth. When I 
and S(0) are given independently, the substitu- 
tion of equation (22) in its present form into the 
energy conservation equation would yield the 
solution to the problem. For diffuse, opaque 
walls, however, I and S(0) are related by 

1 G3 

xl = GLS(O) + (1 - E) 
J J 

27~~ dp S(t) e-*‘@ F 
0 0 

z d(O) + $(I - C)& S(0). (23) 

Tbe radiation heat flux becomes at the boundary 

qr = - F & S(0) + n(Z - S(O)), (24a) 

or, for opaque walls, 
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q, = - T 6 ; S(0). WW 

By comparing equation (24b) with equation (19) 
a difference of factor ~!2 is seen between the heat 
flux at the boundary and the heat flux far away 
from the boundary. Therefore the temperature 
gradient is generally steeper near the boundary. 

Consider a plane layer again for example. 
Substituting equation (22) into the equation of 
conservation of energy and using the tempera- 
ture continuity boundary condition result in the 
total heat flux in terms of the driving potentials 
at both boundaries 

241 = 3N(l - 0,) + (1 - @) 

+(I: - 1) + 3 (@ - z;, 

+ ;-&e(o) -+- $6; ; 6(q)), (25) 

where 

r* = paL, N=$- 3’ 
1 

82 = T,/T,, 0 = T,‘T,, 

The total heat flux given by equation (25) must 
equal the total heat fluxes at both boundaries 
obtained by using equation (24) for the radiation 
heat flux and Fourier’s law for the conduction 
heat flux. Eliminating d&O)/dz and d&,)/dr 
among them then yields 

The above analysis reveals that for opaque 
walls the modified Rosseland approximation, 
equation (22), leads to a correction of order 
(l/z,) on the total heat flux. Hence, the Rosse- 
land approximation, equation (19), is as valid 
in the opaque limit as the modified Rosseland 
approximation is. However, as was pointed out 
earlier that the temperature gradient obtained 
from equation (22) is steeper near the boundary 
than that obtained from equation (19) the Rosse- 
land approximation will yield a lower conduc- 
tion heat flux and a higher radiation heat flux 
than the modified Rosseland approximation. 
Some results of the total heat flux calculated 
from equation (26) for Q2 = O-5, cl = E~ = 1, 
and r0 = 10 are presented in Fig. 1 which shows 
the improved accuracy of the results given by 
equation (26) over the results given by the 
Rosseland approximation. 

For transparent wall equation (27) gives for 
8, = 0.5, z0 = 10, e2 = I, N = 1, and 1: = 4, 
i.e. 

I, = 4;T:. 

the heat flux, 

q+ = 0.595. 

While the Rosseland approximation gives the 
heat flux, 

4 + = 0.325, 

which would be of error 83 per cent if O-595 is 
assumed to be reasonably accurate. 

When radiation heat transfer becomes more 

qf = 32, 

3N (1 - 6,) + (I - g) 

4+ 

; + $(l - t;J 

N +$Q 

+ d + 5(1 - Q) 

(NM:) + 3 c2 

for opaque walls, and 

3N(l - 8,) + (1 - e) -I- - 1) 
q+ = 

3% $ 2 +j(l -Q) 
(27) 

4+- 
N+f+(N/@;)+$, 

for opaque wall at boundary 2 and transparent wall with II(p) = I, = constant at boundary 1. 
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W- 
- Approximate soluticm. cquotion (26) 

- - - Rosselond oppmrimotion 121 

I I I1111111 I I I IIIIIJ 
0.01 04 I.0 

N 

FIG. 1. Heat transfer for combined radiation and conduction 
between parallel black walls, o2 = 0.5 and T,, = 10. 

predominant, Taylor’s expansion of the temp- 
erature function near the boundary becomes a 
poorer representation. Finally a singularity of 
the temperature function appears at the bound- 
ary when the radiation heat transfer becomes 
the sole mechanism of heat transfer. It seems that 
the singular perturbation technique has to be 
employed to solve this problem which will be 
discussed in Section 4.1. 

3.2. The transparent limit 
In the transparent limit, J(z) z J,,(??). The 

equation of conservation of energy becomes 

2 div(grad 0) = O4 - ~ JO 
6 (a/z)T:’ 

(28) 

Consider, for example, a plane layer again. The 
equation of conservation of energy then be- 
comes [2] 

i+LZ;, (29) 

where J,+ G ,Z,,/(~,/7t) Tt. The boundary condi- 
tions of equation (29) are the temperatures at 
both boundaries 

e(0) = 1 and @r,) = 02, (30) 

and the heat fluxes at both boundaries in terms 
of incident intensities, I,, and I,, 

+ Z: - I;(1 - 22,) - 2’Soe4(t)dr (3la) 
0 

and 

d&To) 
q+ = - 4Ndr + I:(1 - 22,) - Z; 

+ 27e4(t) dr. (31b) 
0 

Now Jof is a constant for a plane layer. 
Equation (29) can be readily integrated with 
respect to 8, 

= $1 - e:, - .Zo+(l - e,), (32) 

which satisfies boundary condition (30). Equa- 
tion (29) can also be integrated with respect to 7, 

N WO) - - 

dr 
N de(70) - J+ 

dr 
7 o o - r0“ dr. (33) 

0 

Dividing each side of equation (32) by the 
corresponding side of equation (33) and sub- 
stituting the resulting equation into the sum of 
equations (31a) and (31 b) result in 

q+ = (I: - I:)(1 - 70) 

+ 4NJ,+(l - 0,) - [(4N/5Xl - e;)] 

z,J,+ - $s4 dr ’ 

(34) 

For 

N/7, % 1, d20/dt2 < z. + 0 

from equation (29). Then the temperature 
distribution (3(x) becomes very close to the 
temperature distribution for pure conduction, 
i.e. 

e(5) = 1 - (1 - e,) 5. (35) 

This gives 

e4dr 
l.- e5 

= &‘. 
2 

de(O) q+ = - 4N-- 
dr 
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Substituting this into equation (34) it follows 

q+ = (z: - z:, (1 - 70) + $(l - e,) 

. . . 

r 
Z: -I; 4N 

1’ + ~ (36) 
0 

+ --$l - 0,). 

Therefore in the transparent limit and for N,/z, 
P 1, the interaction between radiation and 
conduction is negligible and the total heat flux 
is equal to the superposition of the radiation 
heat flux in the absence of conduction and the 
conduction heat flux in the absence of radiation. 

It seems also feasible that the temperature 
gradients at both boundaries be first obtained 

in terms of the integral, 7 84 dr, by solving equa- 
0 

tions (32) and (33). Then one of them be substi- 
tuted into equation (31a). for instance, to solve 

for the integral, y I!? dz, in terms of q+. The total 

heat flux may tOhen be determined from equa- 
tion (31b) with the values of de(z,)/dr and 

1 19~ d z t us iven. In this way solutions with h g’ 

temperature distribution, 0(r), not subjected to 
equation (35) may be obtained. However as 
radiation becomes more and more predominant 
and the temperature distribution approaches 
that of the mean intensity, (a/rr)T4(x) + J,(x), 
the use of the above algebraic steps becomes 
ambiguous, because the temperature function 
has singularities at boundaries in the absence of 
conduction, and the temperature gradients at 
boundaries are undefined. 

In the radiation predominant, transparent 
case the singular perturbation technique can 
still be employed for the solution of equation 
(29). Since the application of this technique 
requires no restriction of the magnitude of 
opacity, it will be discussed in Section 4.1 for the 
general case. 

4. COMBINED RADIATION AND 
CONDUCTION-PART B 

Encouraged by the usefulness of considering 

the opaque and transparent limits of a medium 
in radiative equilibrium, the solution to the 
problem of combined radiation and conduction 
was also sought in these two limits in the last 
section. It was found, however, that in the 
radiation predominant case the solution to the 
problem calls for the use of the singular pertur- 
bation technique regardless of whether the 
medium is opaque or transparent. Therefore the 
methods in Section 3 fail to yield a pair of 
asymptotic solutions which are complementary 
with each other. 

Since the radiation predominant case pre- 
sents itself naturally as the case whose solution 
calls for the application of the singular pertur- 
bation technique, it will be discussed first in 
Section 4.1. Then its complementary case, the 
conduction predominant case. will be discussed 
in Section 4.2. 

4.1 Radiation predominant case 
One of the purposes of this section is to 

indicate that the same calculation procedure 
used in [5] can be applied to a larger class of 
body-geometries other than plane-layer. 

Substitution of equation (2) into the equation 
of conservation of energy results in 

- div & = 47cpcc(S - J). (37) 

Since there exist temperature slips at boundaries 
for a medium in radiative equilibrium, the effect 
of conduction appears first in a thin layer near 
the boundaries. It is sufficient to consider such 
a thin layer to be a plane layer. In this boundary 
layer, equation (37) reduces into the dimension- 
less form. 

f34 - N$! = J+ g J:, (38) 

where the dimensionless mean intensity, J+, is 
approximated by that of the medium in radiative 
equilibrium, J:, as a first approximation. 

Equation (38) is identical to equation (33) in 
[5]. Hence the method of solution in [5] can be 
immediately applied to solve equation (38). In 
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obtaining equation (38), however, no restriction 
to plane-layer geometry is made and no differ- f(r) = $ [f - (1 - WI 

ential approximation is used. The only approxi- 
mation made, J z J, is equivalent to the 
physical assumption that the effect of conduction 

+ jdt,cL 0 [3 W~J) + 3 % W, - r&l 

is so small that it changes negligibly the mean 
(42) 

intensity of the medium from that in radiative 
and 

equilibrium. The temperature profile, of course, 
will be quite different from that in radiative M&t) = j&W&ls - tl)ds 

0 

equilibrium where 

t14 = J,’ everywhere. 
= H(r - r) d ((1 - t) - f Mot - rot) 

4.2 Conduction predominant case 
For the conduction predominant case the 

perturbation of radiation on conduction does 
not limit its effect in thin boundary layers. Hence 
equation (37) cannot be solved separately in 
distinct geometric regions. But in this case, the 
differential operator, d2/dr2, can be treated by 
using Green’s function because the temperature 
function and its second order derivative are 
functions whose square is integrable [lo]. 

For simplicity, consider a plane-layer with 
black opaque walls. The equation of conserva- 
tion of energy in dimensionless form is 

N d28 
---z= 
r; d5 

- 3 ~~(7~5) - f 0; ~,(r, - rot) 

+ e463 - + ro~e4(t~E,(ro I5 - t() dt. (39) 

The Green’s function for differential operator, 
- d2/dt2, with Dirichlet boundary conditions 
is equal to 

s(5, t) = r(f - t) H(t - 5) + t(l - 5) H(< - 0, 
(40) 

where H(t) is the unit step function. A nonlinear 
integral equation is obtained by using the 
Green’s function, 

N 8 = f(r) + J@(t) [ - s(5, t) + f WOK, 01 dt, 
Gl 0 

(41) 

wheref(r) and h(& t) are known functions and 
FIG. 2. Temperature profile for combined radiation and 

are given as follows : 
conduction between parallel black walls, e2 = 05. r,, = 1 

and iV = 0.1. 

+ $ (1 - 5) E,(w) + $5 E&o - Tot) 1 
+ H(t - t) 

[ 
$ t(l - 0 - $ Wo5 - Tot) 

+ $ (1 - 5) Wet) + $5&h, - rot) 1 
(43) 

If the pure conduction solution, 

e(t) = 1 - (1 - e,) r, 
is substituted into the integrand of equation 
(41), the integration can be readily carried out 
to give the first order term in a regular perturba- 
tion series. The resulting algebraic expression is 
so lengthy that it would not be presented here. 
An example of this result is given in Fig. 2. 

0.6 - 

e 

0.7 - 

0 Numerical, Viskonto 

@6- and Grash (19621 
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Also presented in Fig. 2 are the results from equalizing the following parameter to be unity 
singular perturbation solution based on the 
calculation in [ll] and the numerical result of 

t 

N!% z() $ 1. (44a) 

Viskanta and Grosh [12]. The value of para- C(N, Q) = 

meter, N, is chosen to be N = 0.1. Recall the N , z,, % 1. (44b) 

definition of N, 

NE-J$ 
3' 
1 

IO- 
I 

Opoque- 
limit 

Hence N = 0.1 implies radiation is predominant 
at wall 1. While at wall 2 N = 0.1 implies 

= 0.8 = o(l), 

that is, radiation and conduction are equally 
important. This leads to the expectation that the 
singular perturbation solution will agree with 
numerical result near wall 1 while the regular 
perturbation solution will not. This expectation 
is confirmed in Fig. 2. It is found, moreover, 
that both perturbation solutions agree with 
numerical results near wall 2 where radiation 
and conduction are equally important. 

5. DISCUSSION AND CONCLUSION 

It should be clear from the discussion on 
combined radiation and conduction in Section 3 
that there exist two distinct boundary conditions 
--the radiation boundary condition and the 
conduction boundary condition. Any consistent 
approximation method should include both 
boundary conditions when both radiation and 
conduction are important. 

It should also be clear from Section 3 that the 
opaque limit solution and the transparent limit 
solution in their present forms fail to constitute 
a complementary solution for the combined 
radiation and conduction problems. On the 
other hand it was shown in Section 4 that the 
radiation predominant solution and the con- 
duction predominant solution constitute a com- 
plementary solution. This conclusion is illus- 
trated in Fig. 3. The solid curve which separates 
the radiation predominant regioh and the con- 
duction predominant region is plotted by 

Conduction- 

More restricted- 
tronsparent limit, 

I I I I 
0 0.223 0511 0.917 I.611 m 

N 

I I I I I J 
I-O 0.8 0.6 0.4 0.2 0 

emN 

FIG. 3. Regions of various limits for combined radiation and 
conduction between parallel walls. 

The parameter C characterizes the relative im- 
portance of conduction and radiation on the 
determination of temperature profile and is 
generally a function of wall emissivities and the 
ratio of wall temperatures also. Here the atten- 
tion is directed only to the two most important 
parameters C depends on, i.e. N and zO. The 
asymptotic dependence of C on N and z,, may 
be obtained from the consideration in Section 
3.2 and Section 3.1. 

Not only the attempt to consider only the 
opaque limit and the transparent limit is un- 
satisfactory, it is, in some respects, even un- 
desirable. This is referring to the possibility that 
the differential approximate formulation [ 14, 
151 would have been easily obtained by com- 
bining equations (1) and (2) if not for the fact 
that the “Rosseland approximation” had always 
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been identified with the more restricted approxi- 
mation, equation (19), in the opaque limit. 
Rosseland [6] originally presented equation (1) 
not equation (19) as an approximate formula for 
the radiation heat flux, then went on to show 
that the condition from which equation (1) was 
derived is fulfilled in the opaque limit. It was 
noted [l l] later that this condition is also 
fulfilled for transparent medium (r,, = 0) in a 
plane-layer. In fact a more careful examination 
of equation (1) reveals that at r. = 0, J is 
mathematically forced to become uniform 
throughout the whole medium. Therefore, solu- 
tion of equations (1) and (2) will be valid at 
z. = 0 only for systems whose mean intensities 
are truly uniform at r. = 0. Regardless of its 
limitation the differential approximation, equa- 
tion (1) is much more useful than the “Rosseland 
approximation”, equation (19), which is just a 
particular form of equation (1) in the opaque 
limit. 

Another point is worth emphasizing here. 
The method of integral equations [e.g. equation 
(41)] is often accused of lacking effectiveness. 
This reproach is especially justified with regard 
to multi-dimensional problems. In this respect, 
the differential approximation, equation (I), 
appears to be very useful in its proper content. 

1. 

2. 
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R&run&-On p&en&e une etude de deux classes de thCories limites pour les problemes de transport de 
chaleur par rayonnement : d’une part, le cas limite opaque et le cas limlte transparent et d’autre part le cas 
limite avec pr&ominance du rayonnement et le cas limite aver prbdomlnanoe de la conduction. 

Dans la premiere situation, il n’y a pas de traitement valable uniformement sans s’occuper si le rayonne- 
ment ou la conduction sont p&dominants Dans la secosde situation, cependant, on a obtenu un traitement 
uniformdment valable quelle que soit la valeur de l’opacit& En cons8quenc.e. il offre un moyen plus logique 
que dans la premibre situation pour rboudre des probl+.mes de rayqnnement et de conduction combinks. 
La schCma comprend la r&solution d’une @ration diffkrentielle non-lintaire dans le cas avec predominance 
du rayonnement et une @ration inttgrale non-linkaire dans le cas avec pr&dominance de la conduction. 
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ZusammenfussrmS-Fur-die beiden Arten der Grenzbetrachtung beim W&rmetransport durch Struhlung 
wird hier eine Untersuchung durchgeftibrt: Fiir die Eetrachtung einer undurchlhssigen Eegrenzung und 
einer durchhiissigen einerseits und fi& jene der strahhmgsdominierenden und der leitungsdominierenden 
Begrenzung andererseits. Ftir den ersten Fall ist eine einheitliche ~h~~un~ ungeachtet der Stmhiungs- 
oder ~itun~do~n~ nicht zu erreichen; im zweiten Fall jedoch ist diem m&h&, ungeachtet des 
Wertes der Durchl&ssigkeit. Damit bietet sich em sinnfMigerer Liisungsweg ftir kombinierte Strahlungs- 
und Leitungsprobleme als im ersten Fall. Das Schema umfasst die Liisung einer nichtlinearen Differential- 
gleichung im strahlungsdominierenden Fall und eine nichtlineare Integralgleichung im leitungsdominie- 

renden Fall. 

~E~OT&~H~-IIpOBe~eH at!aZH3 p[ByX BllAOB ~Pe~eJIb~i~X 3afiZY.I ~yq~CTOr0 Te~~IOO6~eIi~: 

~Pe~e~bH~~ Ite~pO~~a~HOCT~~ MJIH ~pe~e~bH0~ npO3pa~I~f~cT~1, C O;IHOii CTOPOHbI, $1 II&Z- 

o6naE[auuri JlyQiCTOrO i4Jn.1 KOl~~yKT~BHOrO 06MeHa CApyrOl~TOp~~bi.&Irr nepBOr0 Cny~afl 

He cywecTByeT MeToAa, pannoueauoro ~nfi npeo6nanaronretI paanaqrin M upeo6nanarorueir 
TeIIJIOtlpOBO~HOCTLI. Bo BTOpOM Cfiyqae IIOJIyqeH MeTOR, IIpHMeHIlMbIfi AJIH JIMBOB CTeIleHH 
rrenpoapauwocru. IIO~TOMY OH AaeT 6onee norawbICt cnoco6 pemeww aagau COBMWTHO~~ 

paAklaQEiH liI TelUlOlIpOBO~HOCTH. MeToAwa RwwfaeT peuieHxe wenkwetiaoro ~@@epeir- 

ilaanbHor0 ypassetwi B cnyqae npeo6~a~a~~e~ pa~aauau II petueuue He~~He~Horo 
~~HTerpa~b~OrO ~pa~H?H~fl R CJlyVae n~eO6~a~a~~e~ T~~~O~pORO~HO~T~. 


